Blog

Inside the SOC

PREVENT

Exploring the Cyber AI Loop as an Analyst: PREVENT/ASM & DETECT

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Jan 2023
02
Jan 2023
This blog explores the use of Darktrace PREVENT/ASM and Darktrace DETECT/Network as triage tools for security teams and the increased visibility provided when they complement each other. An example and mock scenario from an Australian environmental customer is also highlighted.

On countless occasions, Darktrace has observed cyber-attacks disrupting business operations by using a vulnerable internet-facing asset as a starting point for infection. Finding that one entry point could be all a threat actor needs to compromise an entire organization. With the objective to prevent such vulnerabilities from being exploited, Darktrace’s latest product family includes Attack Surface Management (ASM) to continuously monitor customer attack surfaces for risks, high-impact vulnerabilities and potential external threats. 

An attack surface is the sum of exposed and internet-facing assets and the associated risks a hacker can exploit to carry out a cyber-attack. PREVENT/ASM uses AI to understand what external assets belong to an organization by searching beyond known servers, networks, and IPs across public data sources. 

This blog discusses how Darktrace PREVENT/ASM could combine with DETECT to find potential vulnerabilities and subsequent exploitation within network traffic. In particular, this blog will investigate the assets of a large Australian company which operates in the environmental sciences industry.   

Introducing ASM

In order to understand the link between PREVENT and DETECT, the core features of ASM should first be showcased.

Figure 1: The PREVENT/ASM dashboard.

When facing the landing page, the UI highlights the number of registered assets identified (with zero prior deployment). The tool then organizes the information gathered online in an easily assessable manner. Analysts can see vulnerable assets according to groupings like ‘Misconfiguration’, ‘Social Media Threat’ and ‘Information Leak’ which shows the type of risk posed to said assets.

Figure 2: The Network tab identifies the external facing assets and their hierarchy in a graphical format.

The Network tab helps analysts to filter further to take more rapid action on the most vulnerable assets and interact with them to gather more information. The image below has been filtered by assets with the ‘highest scoring’ risk.

Figure 3: PREVENT/ASM showing a high scoring asset.

Interacting with the showcased asset selected above allows pivoting to the following page, this provides more granular information around risk metrics and the asset itself. This includes a more detailed description of what the vulnerabilities are, as well as general information about the endpoint including its location, URL, web status and technologies used.

  Figure 4: Asset pages for an external web page at risk.

Filtering does not end here. Within the Insights tab, analysts can use the search bar to craft personalized queries and narrow their focus to specific types of risk such as vulnerable software, open ports, or potential cybersquatting attempts from malicious actors impersonating company brands. Likewise, filters can be made for assets that may be running software at risk from a new CVE. 

Figure 5: Insights page with custom queries to search for assets at risk of Log4J exploitation.

For each of the entries that can be read on the left-hand side, a query that could resemble the one on the top right exists. This allows users to locate specific findings beyond those risks that are categorized as critical. These broader searches can range from viewing the inventory as a whole, to seeing exposed APIs, expiring certificates, or potential shadow IT. Queries will return a list with all the assets matching the given criteria, and users can then explore them further by viewing the asset page as seen in Figure 4.

Compromise Scenario

Now that a basic explanation of PREVENT/ASM has been given, this scenario will continue to look at the Australian customer but show how Darktrace can follow a potential compromise of an at-risk ASM asset into the network. 

Having certain ports open could make it particularly easy for an attacker to access an internet-facing asset, particularly those sensitive ones such as 3389 (RDP), 445 (SMB), 135 (RPC Epmapper). Alternatively, a vulnerable program with a well-known exploitation could also aid the task for threat actors.

In this specific case, PREVENT/ASM identified multiple external assets that belonged to the customer with port 3389 open. One of these assets can be labelled as ‘Server A'. Whilst RDP connections can be protected with a password for a given user, if those were weak to bruteforce, it could be an easy task for an attacker to establish an admin session remotely to the victim machine.

Figure 6: Insights tab query filtering for open RDP port 3389.

N or zero-day vulnerabilities associated with the protocol could also be exploited; for example, CVE-2019-0708 exploits an RCE vulnerability in Remote Desktop where an unauthenticated attacker connects to the target system using RDP and sends specially crafted requests. This vulnerability is pre-authentication and requires no user interaction. 

Certain protocols are known to be sensitive according to the control they provide on a destination machine. These are developed for administrative purposes but have the potential to ease an attacker’s job if accessible. Thanks to PREVENT/ASM, security teams can anticipate such activity by having visibility over those assets that could be vulnerable. If this RDP were successfully exploited, DETECT/Network would then highlight the unusual activity performed by the compromised device as the attacker moved through the kill chain.  

There are several models within DETECT/Network which monitor for risks against internet facing assets. For example, ‘Server A’ which had an open 3389 port on ASM registered the following model breach in the network:

Figure 7: Breach log showing Anomalous Server Activity / New Internet Facing System model for ‘Server A’.

A model like this could highlight a misconfiguration that has caused an internal device to become unexpectedly open to the internet. It could also suggest a compromised device that has now been opened to the internet to allow further exploitation. If the result of a sudden change, such an asset would also be detected by ASM and highlighted within the ‘New Assets’ part of the Insights page. Ultimately this connection was not malicious, however it shows the ability for security teams to track between PREVENT to DETECT and verify an initial compromise.  

A mock scenario can take this further. Using the continued example of an open port 3389 intrusion, new RDP cookies may be registered (perhaps even administrative). This could enable further lateral movement and eventual privilege escalation. Various DETECT models would highlight actions of this nature, two examples are below:

Figure 8: RDP Lateral Movement related model breaches on customer.

Alongside efforts to move laterally, Darktrace may find attempts at reconnaissance or C2 communication from compromised internet facing devices by looking at Darktrace DETECT model breaches including ‘Network Scan’, ‘SMB Scanning’ and ‘Active Directory Reconnaissance’. In this case the network also saw repeated failed internal connections followed by the ‘LDAP Brute-Force Activity model’ around the same time as the RDP activity. Had this been malicious, DETECT would then continue to provide visibility into the C2 and eventual malware deployment stages. 

With the combined visibility of both tools, Darktrace users have support for greater triage across the whole kill chain. For customers also using RESPOND, actions will be taken from the DETECT alerting to subsequently block malicious activity. In doing so, inputs will have fed across the whole Cyber AI Loop by having learnt from PREVENT, DETECT and RESPOND.

This feed from the Cyber AI Loop works both ways. In Figure 9, below, a DETECT model breach shows a customer alert from an internet facing device: 

Figure 9: Model breach on internet-facing server.

This breach took place because an established server suddenly started serving HTTP sessions on a port commonly used for HTTPS (secure) connections. This could be an indicator that a criminal may have gained control of the device and set it to listen on the given port and enable direct connection to the attacker’s machine or command and control server. This device can be viewed by an analyst in its Darktrace PREVENT version, where new metrics can be observed from a perspective outside of the network.

Figure 10: Assets page for server. PREVENT shows few risks for this asset. 

This page reports the associated risks that could be leveraged by malicious actors. In this case, the events are not correlated, but in the event of an attack, this backwards pivoting could help to pinpoint a weak link in the chain and show what allowed the attacker into the network. In doing so this supports the remediation and recovery process. More importantly though, it allows organizations to be proactive and take appropriate security measures required before it could ever be exploited.

Concluding Thoughts

The combination of PREVENT/ASM with DETECT/Network provides wide and in-depth visibility over a company’s infrastructure. Through the Cyber AI Loop, this coverage is continually learning and updating based on inputs from both. PREVENT/ASM can show companies the potential weaknesses that a cybercriminal could take advantage of. In turn this allows them to prioritize patching, updating, and management of their internet facing assets. At the same time, Darktrace DETECT will show the anomalous behavior of any of these internet facing devices, enabling security teams or RESPOND to stop an attack. Use of these tools by an analyst together is effective in gaining informed security data which can be fed back to IT management. Leveraging this allows normal company operations to be performed without the worry of cyber disruption.

Credit to: Emma Foulger, Senior Cyber Analyst at Darktrace

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Gabriel Hernandez
Book a 1-1 meeting with one of our experts
share this article
USE CASES
항목을 찾을 수 없습니다.

More in this series

항목을 찾을 수 없습니다.

Blog

항목을 찾을 수 없습니다.

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

References

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

Continue reading
About the author

Blog

Inside the SOC

Sliver C2: How Darktrace Provided a Sliver of Hope in the Face of an Emerging C2 Framework

Default blog imageDefault blog image
17
Apr 2024

Offensive Security Tools

As organizations globally seek to for ways to bolster their digital defenses and safeguard their networks against ever-changing cyber threats, security teams are increasingly adopting offensive security tools to simulate cyber-attacks and assess the security posture of their networks. These legitimate tools, however, can sometimes be exploited by real threat actors and used as genuine actor vectors.

What is Sliver C2?

Sliver C2 is a legitimate open-source command-and-control (C2) framework that was released in 2020 by the security organization Bishop Fox. Silver C2 was originally intended for security teams and penetration testers to perform security tests on their digital environments [1] [2] [5]. In recent years, however, the Sliver C2 framework has become a popular alternative to Cobalt Strike and Metasploit for many attackers and Advanced Persistence Threat (APT) groups who adopt this C2 framework for unsolicited and ill-intentioned activities.

The use of Sliver C2 has been observed in conjunction with various strains of Rust-based malware, such as KrustyLoader, to provide backdoors enabling lines of communication between attackers and their malicious C2 severs [6]. It is unsurprising, then, that it has also been leveraged to exploit zero-day vulnerabilities, including critical vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

In early 2024, Darktrace observed the malicious use of Sliver C2 during an investigation into post-exploitation activity on customer networks affected by the Ivanti vulnerabilities. Fortunately for affected customers, Darktrace DETECT™ was able to recognize the suspicious network-based connectivity that emerged alongside Sliver C2 usage and promptly brought it to the attention of customer security teams for remediation.

How does Silver C2 work?

Given its open-source nature, the Sliver C2 framework is extremely easy to access and download and is designed to support multiple operating systems (OS), including MacOS, Windows, and Linux [4].

Sliver C2 generates implants (aptly referred to as ‘slivers’) that operate on a client-server architecture [1]. An implant contains malicious code used to remotely control a targeted device [5]. Once a ‘sliver’ is deployed on a compromised device, a line of communication is established between the target device and the central C2 server. These connections can then be managed over Mutual TLS (mTLS), WireGuard, HTTP(S), or DNS [1] [4]. Sliver C2 has a wide-range of features, which include dynamic code generation, compile-time obfuscation, multiplayer-mode, staged and stageless payloads, procedurally generated C2 over HTTP(S) and DNS canary blue team detection [4].

Why Do Attackers Use Sliver C2?

Amidst the multitude of reasons why malicious actors opt for Sliver C2 over its counterparts, one stands out: its relative obscurity. This lack of widespread recognition means that security teams may overlook the threat, failing to actively search for it within their networks [3] [5].

Although the presence of Sliver C2 activity could be representative of authorized and expected penetration testing behavior, it could also be indicative of a threat actor attempting to communicate with its malicious infrastructure, so it is crucial for organizations and their security teams to identify such activity at the earliest possible stage.

Darktrace’s Coverage of Sliver C2 Activity

Darktrace’s anomaly-based approach to threat detection means that it does not explicitly attempt to attribute or distinguish between specific C2 infrastructures. Despite this, Darktrace was able to connect Sliver C2 usage to phases of an ongoing attack chain related to the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPN appliances in January 2024.

Around the time that the zero-day Ivanti vulnerabilities were disclosed, Darktrace detected an internal server on one customer network deviating from its expected pattern of activity. The device was observed making regular connections to endpoints associated with Pulse Secure Cloud Licensing, indicating it was an Ivanti server. It was observed connecting to a string of anomalous hostnames, including ‘cmjk3d071amc01fu9e10ae5rt9jaatj6b.oast[.]live’ and ‘cmjft14b13vpn5vf9i90xdu6akt5k3pnx.oast[.]pro’, via HTTP using the user agent ‘curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7’.

Darktrace further identified that the URI requested during these connections was ‘/’ and the top-level domains (TLDs) of the endpoints in question were known Out-of-band Application Security Testing (OAST) server provider domains, namely ‘oast[.]live’ and ‘oast[.]pro’. OAST is a testing method that is used to verify the security posture of an application by testing it for vulnerabilities from outside of the network [7]. This activity triggered the DETECT model ‘Compromise / Possible Tunnelling to Bin Services’, which breaches when a device is observed sending DNS requests for, or connecting to, ‘request bin’ services. Malicious actors often abuse such services to tunnel data via DNS or HTTP requests. In this specific incident, only two connections were observed, and the total volume of data transferred was relatively low (2,302 bytes transferred externally). It is likely that the connections to OAST servers represented malicious actors testing whether target devices were vulnerable to the Ivanti exploits.

The device proceeded to make several SSL connections to the IP address 103.13.28[.]40, using the destination port 53, which is typically reserved for DNS requests. Darktrace recognized that this activity was unusual as the offending device had never previously been observed using port 53 for SSL connections.

Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.
Figure 1: Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.

Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.
Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.

Further investigation into the suspicious IP address revealed that it had been flagged as malicious by multiple open-source intelligence (OSINT) vendors [8]. In addition, OSINT sources also identified that the JARM fingerprint of the service running on this IP and port (00000000000000000043d43d00043de2a97eabb398317329f027c66e4c1b01) was linked to the Sliver C2 framework and the mTLS protocol it is known to use [4] [5].

An Additional Example of Darktrace’s Detection of Sliver C2

However, it was not just during the January 2024 exploitation of Ivanti services that Darktrace observed cases of Sliver C2 usages across its customer base.  In March 2023, for example, Darktrace detected devices on multiple customer accounts making beaconing connections to malicious endpoints linked to Sliver C2 infrastructure, including 18.234.7[.]23 [10] [11] [12] [13].

Darktrace identified that the observed connections to this endpoint contained the unusual URI ‘/NIS-[REDACTED]’ which contained 125 characters, including numbers, lower and upper case letters, and special characters like “_”, “/”, and “-“, as well as various other URIs which suggested attempted data exfiltration:

‘/upload/api.html?c=[REDACTED] &fp=[REDACTED]’

  • ‘/samples.html?mx=[REDACTED] &s=[REDACTED]’
  • ‘/actions/samples.html?l=[REDACTED] &tc=[REDACTED]’
  • ‘/api.html?gf=[REDACTED] &x=[REDACTED]’
  • ‘/samples.html?c=[REDACTED] &zo=[REDACTED]’

This anomalous external connectivity was carried out through multiple destination ports, including the key ports 443 and 8888.

Darktrace additionally observed devices on affected customer networks performing TLS beaconing to the IP address 44.202.135[.]229 with the JA3 hash 19e29534fd49dd27d09234e639c4057e. According to OSINT sources, this JA3 hash is associated with the Golang TLS cipher suites in which the Sliver framework is developed [14].

Conclusion

Despite its relative novelty in the threat landscape and its lesser-known status compared to other C2 frameworks, Darktrace has demonstrated its ability effectively detect malicious use of Sliver C2 across numerous customer environments. This included instances where attackers exploited vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

While human security teams may lack awareness of this framework, and traditional rules and signatured-based security tools might not be fully equipped and updated to detect Sliver C2 activity, Darktrace’s Self Learning AI understands its customer networks, users, and devices. As such, Darktrace is adept at identifying subtle deviations in device behavior that could indicate network compromise, including connections to new or unusual external locations, regardless of whether attackers use established or novel C2 frameworks, providing organizations with a sliver of hope in an ever-evolving threat landscape.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

Appendices

DETECT Model Coverage

  • Compromise / Repeating Connections Over 4 Days
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Server Activity / Server Activity on New Non-Standard Port
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL or HTTP Beacon
  • Compromise / Possible Malware HTTP Comms
  • Compromise / Possible Tunnelling to Bin Services
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System

List of Indicators of Compromise (IoCs)

18.234.7[.]23 - Destination IP - Likely C2 Server

103.13.28[.]40 - Destination IP - Likely C2 Server

44.202.135[.]229 - Destination IP - Likely C2 Server

References

[1] https://bishopfox.com/tools/sliver

[2] https://vk9-sec.com/how-to-set-up-use-c2-sliver/

[3] https://www.scmagazine.com/brief/sliver-c2-framework-gaining-traction-among-threat-actors

[4] https://github[.]com/BishopFox/sliver

[5] https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors

[6] https://securityaffairs.com/158393/malware/ivanti-connect-secure-vpn-deliver-krustyloader.html

[7] https://www.xenonstack.com/insights/out-of-band-application-security-testing

[8] https://www.virustotal.com/gui/ip-address/103.13.28.40/detection

[9] https://threatfox.abuse.ch/browse.php?search=ioc%3A107.174.78.227

[10] https://threatfox.abuse.ch/ioc/1074576/

[11] https://threatfox.abuse.ch/ioc/1093887/

[12] https://threatfox.abuse.ch/ioc/846889/

[13] https://threatfox.abuse.ch/ioc/1093889/

[14] https://github.com/projectdiscovery/nuclei/issues/3330

Continue reading
About the author
Natalia Sánchez Rocafort
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

무료 평가판 시작
Darktrace AI protecting a business from cyber threats.