Blog

Inside the SOC

When Hallucinations Become Reality: An Exploration of AI Package Hallucination Attacks

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Oct 2023
30
Oct 2023
This blog discusses the plausible threat of malicious actors taking advantage of errors in generative AI tools, or AI “hallucinations”, to launch malicious packet attacks and how Darktrace’s suite of products might detect these attempts.

AI tools open doors for threat actors

On November 30, 2022, the free conversational language generation model ChatGPT was launched by OpenAI, an artificial intelligence (AI) research and development company. The launch of ChatGPT was the culmination of development ongoing since 2018 and represented the latest innovation in the ongoing generative AI boom and made the use of generative AI tools accessible to the general population for the first time.

ChatGPT is estimated to currently have at least 100 million users, and in August 2023 the site reached 1.43 billion visits [1]. Darktrace data indicated that, as of March 2023, 74% of active customer environments have employees using generative AI tools in the workplace [2].

However, with new tools come new opportunities for threat actors to exploit and use them maliciously, expanding their arsenal.

Much consideration has been given to mitigating the impacts of the increased linguistic complexity in social engineering and phishing attacks resulting from generative AI tool use, with Darktrace observing a 135% increase in ‘novel social engineering attacks’ across thousands of active Darktrace/Email™ customers from January to February 2023, corresponding with the widespread adoption of ChatGPT and its peers [3].

Less overall consideration, however, has been given to impacts stemming from errors intrinsic to generative AI tools. One of these errors is AI hallucinations.

What is an AI hallucination?

AI “hallucination” is a term which refers to the predictive elements of generative AI and LLMs’ AI model gives an unexpected or factually incorrect response which does not align with its machine learning training data [4]. This differs from regular and intended behavior for an AI model, which should provide a response based on the data it was trained upon.  

Why are AI hallucinations a problem?

Despite the term indicating it might be a rare phenomenon, hallucinations are far more likely than accurate or factual results as the AI models used in LLMs are merely predictive and focus on the most probable text or outcome, rather than factual accuracy.

Given the widespread use of generative AI tools in the workplace employees are becoming significantly more likely to encounter an AI hallucination. Furthermore, if these fabricated hallucination responses are taken at face value, they could cause significant issues for an organization.

Use of generative AI in software development

Software developers may use generative AI for recommendations on how to optimize their scripts or code, or to find packages to import into their code for various uses. Software developers may ask LLMs for recommendations on specific pieces of code or how to solve a specific problem, which will likely lead to a third-party package. It is possible that packages recommended by generative AI tools could represent AI hallucinations and the packages may not have been published, or, more accurately, the packages may not have been published prior to the date at which the training data for the model halts. If these hallucinations result in common suggestions of a non-existent package, and the developer copies the code snippet wholesale, this may leave the exchanges vulnerable to attack.

Research conducted by Vulcan revealed the prevalence of AI hallucinations when ChatGPT is asked questions related to coding. After sourcing a sample of commonly asked coding questions from Stack Overflow, a question-and-answer website for programmers, researchers queried ChatGPT (in the context of Node.js and Python) and reviewed its responses. In 20% of the responses provided by ChatGPT pertaining to Node.js at least one un-published package was included, whilst the figure sat at around 35% for Python [4].

Hallucinations can be unpredictable, but would-be attackers are able to find packages to create by asking generative AI tools generic questions and checking whether the suggested packages exist already. As such, attacks using this vector are unlikely to target specific organizations, instead posing more of a widespread threat to users of generative AI tools.

Malicious packages as attack vectors

Although AI hallucinations can be unpredictable, and responses given by generative AI tools may not always be consistent, malicious actors are able to discover AI hallucinations by adopting the approach used by Vulcan. This allows hallucinated packages to be used as attack vectors. Once a malicious actor has discovered a hallucination of an un-published package, they are able to create a package with the same name and include a malicious payload, before publishing it. This is known as a malicious package.

Malicious packages could also be recommended by generative AI tools in the form of pre-existing packages. A user may be recommended a package that had previously been confirmed to contain malicious content, or a package that is no longer maintained and, therefore, is more vulnerable to hijack by malicious actors.

In such scenarios it is not necessary to manipulate the training data (data poisoning) to achieve the desired outcome for the malicious actor, thus a complex and time-consuming attack phase can easily be bypassed.

An unsuspecting software developer may incorporate a malicious package into their code, rendering it harmful. Deployment of this code could then result in compromise and escalation into a full-blown cyber-attack.

Figure 1: Flow diagram depicting the initial stages of an AI Package Hallucination Attack.

For providers of Software-as-a-Service (SaaS) products, this attack vector may represent an even greater risk. Such organizations may have a higher proportion of employed software developers than other organizations of comparable size. A threat actor, therefore, could utilize this attack vector as part of a supply chain attack, whereby a malicious payload becomes incorporated into trusted software and is then distributed to multiple customers. This type of attack could have severe consequences including data loss, the downtime of critical systems, and reputational damage.

How could Darktrace detect an AI Package Hallucination Attack?

In June 2023, Darktrace introduced a range of DETECT™ and RESPOND™ models designed to identify the use of generative AI tools within customer environments, and to autonomously perform inhibitive actions in response to such detections. These models will trigger based on connections to endpoints associated with generative AI tools, as such, Darktrace’s detection of an AI Package Hallucination Attack would likely begin with the breaching of one of the following DETECT models:

  • Compliance / Anomalous Upload to Generative AI
  • Compliance / Beaconing to Rare Generative AI and Generative AI
  • Compliance / Generative AI

Should generative AI tool use not be permitted by an organization, the Darktrace RESPOND model ‘Antigena / Network / Compliance / Antigena Generative AI Block’ can be activated to autonomously block connections to endpoints associated with generative AI, thus preventing an AI Package Hallucination attack before it can take hold.

Once a malicious package has been recommended, it may be downloaded from GitHub, a platform and cloud-based service used to store and manage code. Darktrace DETECT is able to identify when a device has performed a download from an open-source repository such as GitHub using the following models:

  • Device / Anomalous GitHub Download
  • Device / Anomalous Script Download Followed By Additional Packages

Whatever goal the malicious package has been designed to fulfil will determine the next stages of the attack. Due to their highly flexible nature, AI package hallucinations could be used as an attack vector to deliver a large variety of different malware types.

As GitHub is a commonly used service by software developers and IT professionals alike, traditional security tools may not alert customer security teams to such GitHub downloads, meaning malicious downloads may go undetected. Darktrace’s anomaly-based approach to threat detection, however, enables it to recognize subtle deviations in a device’s pre-established pattern of life which may be indicative of an emerging attack.

Subsequent anomalous activity representing the possible progression of the kill chain as part of an AI Package Hallucination Attack could then trigger an Enhanced Monitoring model. Enhanced Monitoring models are high-fidelity indicators of potential malicious activity that are investigated by the Darktrace analyst team as part of the Proactive Threat Notification (PTN) service offered by the Darktrace Security Operation Center (SOC).

Conclusion

Employees are often considered the first line of defense in cyber security; this is particularly true in the face of an AI Package Hallucination Attack.

As the use of generative AI becomes more accessible and an increasingly prevalent tool in an attacker’s toolbox, organizations will benefit from implementing company-wide policies to define expectations surrounding the use of such tools. It is simple, yet critical, for example, for employees to fact check responses provided to them by generative AI tools. All packages recommended by generative AI should also be checked by reviewing non-generated data from either external third-party or internal sources. It is also good practice to adopt caution when downloading packages with very few downloads as it could indicate the package is untrustworthy or malicious.

As of September 2023, ChatGPT Plus and Enterprise users were able to use the tool to browse the internet, expanding the data ChatGPT can access beyond the previous training data cut-off of September 2021 [5]. This feature will be expanded to all users soon [6]. ChatGPT providing up-to-date responses could prompt the evolution of this attack vector, allowing attackers to publish malicious packages which could subsequently be recommended by ChatGPT.

It is inevitable that a greater embrace of AI tools in the workplace will be seen in the coming years as the AI technology advances and existing tools become less novel and more familiar. By fighting fire with fire, using AI technology to identify AI usage, Darktrace is uniquely placed to detect and take preventative action against malicious actors capitalizing on the AI boom.

Credit to Charlotte Thompson, Cyber Analyst, Tiana Kelly, Analyst Team Lead, London, Cyber Analyst

References

[1] https://seo.ai/blog/chatgpt-user-statistics-facts

[2] https://darktrace.com/news/darktrace-addresses-generative-ai-concerns

[3] https://darktrace.com/news/darktrace-email-defends-organizations-against-evolving-cyber-threat-landscape

[4] https://vulcan.io/blog/ai-hallucinations-package-risk?nab=1&utm_referrer=https%3A%2F%2Fwww.google.com%2F

[5] https://twitter.com/OpenAI/status/1707077710047216095

[6] https://www.reuters.com/technology/openai-says-chatgpt-can-now-browse-internet-2023-09-27/

NEWSLETTER

Like this and want more?

Stay up to date on the latest industry news and insights.
You can unsubscribe at any time. Privacy Policy
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Charlotte Thompson
Cyber Analyst
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst
share this article
USE CASES
항목을 찾을 수 없습니다.

More in this series

항목을 찾을 수 없습니다.

Blog

Inside the SOC

Royal Pains: How Darktrace Refused to Bend the Knee to the MyKings Botnet

Default blog imageDefault blog image
06
Dec 2023

Botnets: A persistent cyber threat

Since their appearance in the wild over three decades ago, botnets have consistently been the attack vector of choice for many threat actors. The most prevalent of these attack vectors are distributed denial of service (DDoS) and phishing campaigns. Their persistent nature means that even if a compromised device in identified, attackers can continue to operate by using the additional compromised devices they will likely have on the target network. Similarly, command and control (C2) infrastructure can easily be restructured between infected systems, making it increasingly difficult to remove the infection.  

MyKings Botnet

One of the most prevalent and sophisticated examples in recent years is the MyKings botnet, also known as Smominru or DarkCloud. Darktrace has observed numerous cases of MyKings botnet compromises across multiple customer environments in several different industries as far back as August 2022. The diverse tactics, techniques, and procedures (TTPs) and sophisticated kill chains employed by MyKings botnet may prove a challenge to traditional rule and signature-based detections.

However, Darktrace’s anomaly-centric approach enabled it to successfully detect a wide-range of indicators of compromise (IoCs) related to the MyKings botnet and bring immediate awareness to customer security teams, as it demonstrated on the network of multiple customers between March and August 2023.

Background on MyKings Botnet

MyKings has been active and spreading steadily since 2016 resulting in over 520,000 infections worldwide.[1] Although verified attribution of the botnet remains elusive, the variety of targets and prevalence of crypto-mining software on affected devices suggests the threat group behind the malware is financially motivated. The operators behind MyKings appear to be highly opportunistic, with attacks lacking an obvious specific target industry. Across Darktrace’s customer base, the organizations affected were representative of multiple industries such as entertainment, mining, education, information technology, health, and transportation.

Given its longevity, the MyKings botnet has unsurprisingly evolved since its first appearance years ago. Initial analyses of the botnet showed that the primary crypto-related activity on infected devices was the installation of Monero-mining software. However, in 2019 researchers discovered a new module within the MyKings malware that enabled clipboard-jacking, whereby the malware replaces a user's copied cryptowallet address with the operator's own wallet address in order to siphon funds.[2]

Similar to other botnets such as the Outlaw crypto-miner, the MyKings botnet can also kill running processes of unrelated malware on the compromised hosts that may have resulted from prior infection.[3] MyKings has also developed a comprehensive set of persistence techniques, including: the deployment of bootkits, initiating the botnet immediately after a system reboot, configuring Registry run keys, and generating multiple Scheduled Tasks and WMI listeners.[4] MyKings have also been observed rotating tools and payloads over time to propagate the botnet. For example, some operators have been observed utilizing PCShare, an open-source remote access trojan (RAT) customized to conduct C2 services, execute commands, and download mining software[5].

Darktrace Coverage

Across observed customer networks between March and August 2023, Darktrace identified the MyKings botnet primarily targeting Windows-based servers that supports services like MySQL, MS-SQL, Telnet, SSH, IPC, WMI, and Remote Desktop (RDP).  In the initial phase of the attack, the botnet would initiate a variety of attacks against a target including brute-forcing and exploitation of unpatched vulnerabilities on exposed servers. The botnet delivers a variety of payloads to the compromised systems including worm downloaders, trojans, executable files and scripts.

This pattern of activity was detected across the network of one particular Darktrace customer in the education sector in early March 2023. Unfortunately, this customer did not have Darktrace RESPOND™ deployed on their network at the time of the attack, meaning the MyKings botnet was able to move through the cyber kill chain ultimately achieving its goal, which in this case was mining cryptocurrency.

Initial Access

On March 6, Darktrace observed an internet-facing SQL server receiving an unusually large number of incoming MySQL connections from the rare external endpoint 171.91.76[.]31 via port 1433. While it is not possible to confirm whether these suspicious connections represented the exact starting point of the infection, such a sudden influx of SQL connection from a rare external endpoint could be indicative of a malicious attempt to exploit vulnerabilities in the server's SQL database or perform password brute-forcing to gain unauthorized access. Given that MyKings typically spreads primarily through such targeting of internet-exposed devices, the pattern of activity is consistent with potential initial access by MyKings.[6]

Initial Command and Control

The device then proceeded to initiate a series of repeated HTTP connections between March 6 and March 10, to the domain www[.]back0314[.]ru (107.148.239[.]111). These connections included HTTP GET requests featuring URIs such as ‘/back.txt',  suggesting potential beaconing and C2 communication. The device continued this connectivity to the external host over the course of four days, primarily utilizing destination ports 80, and 6666. While port 80 is commonly utilized for HTTP connections, port 6666 is a non-standard port for the protocol. Such connectivity over non-standard ports can indicate potential detection evasion and obfuscation tactics by the threat actors.  During this time, the device also initiated repeated connections to additional malicious external endpoints with seemingly algorithmically generated hostnames such as pc.pc0416[.]xyz.

Darktrace UI image
Figure 1: Model breach showing details of the malicious domain generation algorithm (DGA) connections.

Tool Transfer

While this beaconing activity was taking place, the affected device also began to receive potential payloads from unusual external endpoints. On April 29, the device made an HTTP GET request for “/power.txt” to the endpoint 192.236.160[.]237, which was later discovered to have multiple open-source intelligence (OSINT) links to malware. Power.txt is a shellcode written in PowerShell which is downloaded and executed with the purpose of disabling Windows Defenders related functions.[7] After the initial script was downloaded (and likely executed), Darktrace went on to detect the device making a series of additional GET requests for several varying compressed and executable files. For example, the device made HTTP requests for '/pld/cmd.txt' to the external endpoint 104.233.224[.]173. In response the external server provided numerous files, including ‘u.exe’, and ‘upsup4.exe’ for download, both of which share file names with previously identified MyKings payloads.

MyKings deploys a diverse array of payloads to expand the botnet and secure a firm position within a compromised system. This multi-faceted approach may render conventional security measures less effective due to the intricacies of and variety of payloads involved in compromises. Darktrace, however, does not rely on static or outdated lists of IoCs in order to detect malicious activity. Instead, DETECT’s Self-Learning AI allows it to identify emerging compromise activity by recognizing the subtle deviations in an affected device’s behavior that could indicate it has fallen into the hands of malicious actors.

Figure 2: External site summary of the endpoint 103.145.106[.]242 showing the rarity of connectivity to the external host.

Achieving Objectives – Crypto-Mining

Several weeks after the initial payloads were delivered and beaconing commenced, Darktrace finally detected the initiation of crypto-mining operations. On May 27, the originally compromised server connected to the rare domain other.xmrpool[.]ru over port 1081. As seen in the domain name, this endpoint appears to be affiliated with pool mining activity and the domain has various OSINT affiliations with the cryptocurrency Monero coin. During this connection, the host was observed passing Monero credentials, activity which parallels similar mining operations observed on other customer networks that had been compromised by the MyKings botnet.

Although mining activity may not pose an immediate or urgent concern for security unauthorized cryptomining on devices can result in detrimental consequences, such as compromised hardware integrity, elevated energy costs, and reduced productivity, and even potential involvement in money laundering.

Figure 3: Event breach log showing details of the connection to the other.xmrpool[.]ru endpoint associated with cryptocurrency mining activity.

Conclusion

Detecting future iterations of the MyKings botnet will likely demand a shift away from an overreliance on traditional rules and signatures and lists of “known bads”, instead requiring organizations to employ AI-driven technology that can identify suspicious activity that represents a deviation from previously established patterns of life.

Despite the diverse range of payloads, malicious endpoints, and intricate activities that constitute a typical MyKing botnet compromise, Darktrace was able successfully detect multiple critical phases within the MyKings kill chain. Given the evolving nature of the MyKings botnet, it is highly probable the botnet will continue to expand and adapt, leveraging new tactics and technologies. By adopting Darktrace’s product of suites, including Darktrace DETECT, organizations are well-positioned to identify these evolving threats as soon as they emerge and, when coupled with the autonomous response technology of Darktrace RESPOND, threats like the MyKings botnet can be stopped in their tracks before they can achieve their ultimate goals.

Credit to: Oluwatosin Aturaka, Analyst Team Lead, Cambridge, Adam Potter, Cyber Analyst

Appendix

IoC Table

IoC - Type - Description + Confidence

162.216.150[.]108- IP - C2 Infrastructure

103.145.106[.]242 - IP - C2 Infrastructure

137.175.56[.]104 - IP - C2 Infrastructure

138.197.152[.]201 - IP - C2 Infrastructure

139.59.74[.]135 - IP - C2 Infrastructure

pc.pc0416[.]xyz - Domain - C2 Infrastructure (DGA)

other.xmrpool[.]ru - Domain - Cryptomining Endpoint

xmrpool[.]ru - Domain - Cryptomining Endpoint

103.145.106[.]55 - IP - Cryptomining Endpoint

ntuser[.]rar - Zipped File - Payload

/xmr1025[.]rar - Zipped File - Payload

/20201117[.]rar - Zipped File - Payload

wmi[.]txt - File - Payload

u[.]exe - Executable File - Payload

back[.]txt - File - Payload

upsupx2[.]exe - Executable File - Payload

cmd[.]txt - File - Payload

power[.]txt - File - Payload

ups[.]html - File - Payload

xmr1025.rar - Zipped File - Payload

171.91.76[.]31- IP - Possible Initial Compromise Endpoint

www[.]back0314[.]ru - Domain - Probable C2 Infrastructure

107.148.239[.]111 - IP - Probable C2 Infrastructure

194.67.71[.]99 - IP- Probable C2 Infrastructure

Darktrace DETECT Model Breaches

  • Device / Initial Breach Chain Compromise
  • Anomalous File / Masqueraded File Transfer (x37)
  • Compromise / Large DNS Volume for Suspicious Domain
  • Compromise / Fast Beaconing to DGA
  • Device / Large Number of Model Breaches
  • Anomalous File / Multiple EXE from Rare External Locations (x30)
  • Compromise / Beacon for 4 Days (x2)
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Server Activity / New Internet Facing System
  • Anomalous File / EXE from Rare External Location (x37)
  • Device / Large Number of Connections to New Endpoints
  • Anomalous Server Activity / Server Activity on New Non-Standard Port (x3)
  • Device / Threat Indicator (x3)
  • Unusual Activity / Unusual External Activity
  • Compromise / Crypto Currency Mining Activity (x37)
  • Compliance / Internet Facing SQL Server
  • Device / Anomalous Scripts Download Followed By Additional Packages
  • Device / New User Agent

MITRE ATT&CK Mapping

ATT&CK Technique - Technique ID

Reconnaissance – T1595.002 Vulnerability Scanning

Resource Development – T1608 Stage Capabilities

Resource Development – T1588.001 Malware

Initial Access – T1190 Exploit Public-Facing Application

Command and Control – T15568.002 Domain Generated Algorithms

Command and Control – T1571 Non-Standard Port

Execution – T1047 Windows Management Instrumentation

Execution – T1059.001 Command and Scripting Interpreter

Persistence – T1542.003 Pre-OS Boot

Impact – T1496 Resource Hijacking

References

[1] https://www.binarydefense.com/resources/threat-watch/mykings-botnet-is-growing-and-remains-under-the-radar/

[2] https://therecord.media/a-malware-botnet-has-made-more-than-24-7-million-since-2019

[3] https://www.darktrace.com/blog/outlaw-returns-uncovering-returning-features-and-new-tactics

[4] https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-mykings-report.pdf

[5] https://www.antiy.com/response/20190822.html

[6] https://ethicaldebuggers.com/mykings-botnet/

[7] https://ethicaldebuggers.com/mykings-botnet/

Continue reading
About the author
Oluwatosin Aturaka
Analyst Team Lead, Cambridge

Blog

Thought Leadership

The Implications of NIS2 on Cyber Security and AI

Default blog imageDefault blog image
05
Dec 2023

The NIS2 Directive requires member states to adopt laws that will improve the cyber resilience of organizations within the EU. It impacts organizations that are “operators of essential services”. Under NIS 1, EU member states could choose what this meant. In an effort to ensure more consistent application, NIS2 has set out its own definition. It eliminates the distinction between operators of essential services and digital service providers from NIS1, instead defining a new list of sectors:

  • Energy (electricity, district heating and cooling, gas, oil, hydrogen)
  • Transport (air, rail, water, road)
  • Banking (credit institutions)
  • Financial market infrastructures
  • Health (healthcare providers and pharma companies)
  • Drinking water (suppliers and distributors)
  • Digital infrastructure (DNS, TLD registries, telcos, data center providers, etc.)
  • ICT service providers (B2B): MSSPs and managed service providers
  • Public administration (central and regional government institutions, as defined per member state)
  • Space
  • Postal and courier services
  • Waste management
  • Chemicals
  • Food
  • Manufacturing of medical devices
  • Computers and electronics
  • Machinery and equipment
  • Motor vehicles, trailers and semi-trailers and other transport equipment
  • Digital providers (online market places, online search engines, and social networking service platforms) and research organizations.

With these updates, it becomes harder to try and find industry segments not included within the scope. NIS2 represents legally binding cyber security requirements for a significant region and economy. Standout features that have garnered the most attention include the tight timelines associated with notification requirements. Under NIS 2, in-scope entities must submit an initial report or “early warning” to the competent national authority or computer security incident response team (CSIRT) within 24 hours from when the entity became aware of a significant incident. This is a new development from the first iteration of the Directive, which used more vague language of the need to notify authorities “without undue delay”.

Another aspect gaining attention is oversight and regulation – regulators are going to be empowered with significant investigation and supervision powers including on-site inspections.

The stakes are now higher, with the prospect of fines that are capped at €10 million or 2% of an offending organization’s annual worldwide turnover – whichever is greater. Added to that, the NIS2 Directive includes an explicit obligation to hold members of management bodies personally responsible for breaches of their duties to ensure compliance with NIS2 obligations – and members can be held personally liable.  

The risk management measures introduced in the Directive are not altogether surprising – they reflect common best practices. Many organizations (especially those that are newly in scope for NIS2) may have to expand their cyber security capabilities, but there’s nothing controversial or alarming in the required measures.  For organizations in this situation, there are various tools, best practices, and frameworks they can leverage.  Darktrace in particular provides capabilities in the areas of visibility, incident handling, and reporting that can help.

NIS2 and Cyber AI

The use of AI is not an outright requirement within NIS2 – which may be down to lack of knowledge and expertise in the area, and/or the immaturity of the sector. The clue to this might be in the timing: the provisional agreement on the NIS2 text was reached in May 2022 – six months before ChatGPT and other open-source Generative AI tools propelled broader AI technology into the forefront of public consciousness. If the language were drafted today, it's not far-fetched to imagine AI being mentioned much more prominently and perhaps even becoming a requirement.

NIS2 does, however, very clearly recommend that “member states should encourage the use of any innovative technology, including artificial intelligence”[1].  Another section speaks directly to essential and important entities, saying that they should “evaluate their own cyber security capabilities, and where appropriate, pursue the integration of cyber security enhancing technologies, such as artificial intelligence or machine learning systems…”[2]

One of the recitals states that “member states should adopt policies on the promotion of active cyber protection”.  Where active cyber protection is defined as “the prevention, detection, monitoring, analysis and mitigation of network security breaches in an active manner.”[3]  

From a Darktrace perspective, our self-learning Cyber AI technology is precisely what enables our technology to deliver active cyber protection – protecting organizations and uplifting security teams at every stage of an incident lifecycle – from proactively hardening defenses before an attack is launched, to real-time threat detection and response, through to recovering quickly back to a state of good health.  

The visibility provided by Darktrace is vital to understanding the effectiveness of policies and ensuring policy compliance. NIS2 also covers incident handling and business continuity, which Darktrace HEAL addresses through AI-enabled incident response, readiness reports, simulations, and secure collaborations.

Reporting is integral to NIS2 and organizations can leverage Darktrace’s incident reporting features to present the necessary technical details of an incident and provide a jump start to compiling a full report with business context and impact.  

What’s Next for NIS2

We don’t yet know the details for how EU member states will transpose NIS2 into national law – they have until 17th October 2024 to work this out. The Commission also commits to reviewing the functioning of the Directive every three years. Given how much our overall understanding and appreciation for not only the dangers of AI but also its power (perhaps even necessity in the realm of cyber security) is changing, we may see many member states will leverage the recitals’ references to AI in order to make a strong push if not a requirement that essential and important organizations within their jurisdiction leverage AI.

Organizations are starting to prepare now to meet the forthcoming legislation related to NIS2. To see how Darktrace can help, talk to your representative or contact us.


[1] (51) on page 11
[2]
(89) on page 17
[3]
(57) on page 12

Continue reading
About the author
John Allen
VP, Cyber Risk & Compliance

귀하의 비즈니스에 좋은 소식입니다.
나쁜 사람들에게 나쁜 소식입니다.

무료 평가판 시작

무료 평가판 시작

유연한 배송
Cloud-based deployment.
빠른 설치
설치하는 데 1 시간 밖에 걸리지 않으며 이메일 보안 평가판의 경우 더 적게 걸립니다.
여정 선택
클라우드, 네트워크 또는 이메일을 포함하여 가장 필요한 곳 어디에서나 셀프 러닝 AI를 사용해 보십시오.
약정 없음
Darktrace Threat Visualizer 및 세 개의 맞춤형 위협 보고서에 대한 모든 액세스 권한이 있으며 구매 의무는 없습니다.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
양식을 제출하는 동안 문제가 발생했습니다.

Get a demo

유연한 배송
가상환경에 설치하거나 하드웨어에 설치할 수 있습니다.
빠른 설치
설치하는 데 1 시간 밖에 걸리지 않으며 이메일 보안 평가판의 경우 더 적게 걸립니다.
여정 선택
클라우드, 네트워크 또는 이메일을 포함하여 가장 필요한 곳 어디에서나 셀프 러닝 AI를 사용해 보십시오.
약정 없음
Darktrace Threat Visualizer 및 세 개의 맞춤형 위협 보고서에 대한 모든 액세스 권한이 있으며 구매 의무는 없습니다.
감사합니다! 제출되었습니다!
양식을 제출하는 동안 문제가 발생했습니다.