Blog

OT

Thought Leadership

TRITON 배후 그룹에 대한 미국의 제재는 어떻게 중요한 기반 시설을 보호할 것인가?

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Nov 2020
17
Nov 2020
As the US Treasury announces new sanctions on the Russian institute believed to be behind the TRITON malware, this blog takes a look at the significance of this attack, and extrapolates what’s around the corner for OT cyber-attacks.

In late October 2020, the US Federal Government announced plans to impose sanctions on a Russian research institute that has been linked with cyber-attacks. The institute is alleged to have played a part in building the customized tools used in the TRITON malware targeting Industrial Control Systems (ICS). These sanctions are part of a wider US Government campaign to disrupt cyber-attacks backed by nation states and large organized crime groups.

TRITON uses a sophisticated set of tactics to maximize its stealth and its potential to do damage. The attack was first observed ‘in the wild’ when it struck a Saudi petrochemical plant in 2017. TRITON has been called ‘the world’s most murderous malware’ due to its potential to cause massive failure in industrial environments by targeting safety systems, along with compromising other critical industrial operations.

Timeline of TRITON

Figure 1: A timeline of the TRITON attack

The significance of TRITON

TRITON has been identified as an Advanced Persistent Threat (APT), meaning that it is a state-sponsored attack distinguished by its high threat level and novel vectors of attack. It was designed to give the attacker complete control over infected systems and enable tampering with industrial controls.

The malware utilized state of the art tactics, techniques and procedures (TTPs) in order to remain undetected, evade security defenses, and achieve the attacker’s goals. Like recent attacks against operational technology (OT) such as EKANS, TRITON exploited the convergence of informational and operational technology (IT/OT) by initially compromising enterprise devices before pivoting into OT subnets.

This chain of compromise is similar to other high-profile OT attacks, such as Havex, Stuxnet, and Industroyer. In fact, Darktrace detected a similar APT, Shamoon 3, when it impacted several firms in the Middle East in December 2018. While this strain of malware didn’t specifically target OT systems, it used similar TTPs to infect and deploy a strain of wiper malware, which wipes the hard drive of the infected device, and typically targets critical infrastructure.

Along similar lines, the US Government reported that at least 20 American electric facilities had been probed for vulnerabilities by the same authors of TRITON based at the Russian Institute in 2019. These activities demonstrate a general increase in OT attacks targeting critical infrastructure backed by nation states.

The evolving threat landscape

The knock-on effects of US sanctions

The recent sanctions are designed to disrupt the actions of active threat groups and to deter would-be attackers. A secondary goal is to raise awareness within the cyber industry and the general public as to the types of cyber-threats faced by critical infrastructure. The sanctions are likely to slow attackers, but not stop them. Indeed, nation states are well resourced and have strong motives, and APT hacker groups will continue to adapt and innovate.

The future of OT attacks

Attacks like Shamoon and EKANS ransomware have demonstrated how IT/OT convergence has made critical infrastructure vulnerable to non-OT targeted attacks. However, there is another development that is emerging on the threat landscape, one that will likely only further the destructive potential of OT attacks. This development is the malicious application of machine learning and other AI technologies to cyber-attacks, otherwise known as ‘offensive AI.’

For OT-specific attacks, APT groups are likely to adopt machine learning and AI techniques to stay ahead of defenders. This would allow attackers to better exploit IT/OT convergence and pivot quicker into OT systems. In other words, with the help of AI and machine learning, malware will be able to autonomously find its way to its target, learning the ins and outs of complex infrastructure in order to strike the right target at the right time.

A highly effective use of machine learning will be to train malware in optimal decision-making. For example, supervised machine learning can transfer the skills of the best malware operators directly into the malware itself. This greater autonomous ability within the malware will allow it to delay establishing a command and control (C2) connection.

Trained malware can operate independently until, for example, it is able to communicate with an OT control system. Establishing C2, performing OT reconnaissance and exfiltrating the results can then be completed extremely rapidly, far too fast for humans to mitigate the threat even if it was spotted immediately.

Future OT attacks targeting critical infrastructure are likely to incorporate several of these techniques. The TRITON framework, for example, required operators of the malware to manually trigger its functions through scripts. In the future, we can conceive of an AI-equipped version operating without command and control, perhaps only calling back at the end of the reconnaissance phase.

Figure 2: AI-enabled malware is able to autonomously find the optimal path to its ICS target

Concluding thoughts

It is becoming apparent that OT attacks are increasingly being carried out by nation state backed hacking groups. These hacker groups have access to cutting edge malware tools to ensure the attackers can remain undetected, evade security tools, and achieve their goals. Indeed, these state-sponsored attackers appear to be getting more aggressive and audacious in their attempts. The sanctions are a step in the right direction, but only a robust defensive strategy will ultimately keep targeted infrastructure from being damaged by these threats.

State-sponsored cyber-attackers are combining the skills of IT and OT malware authors to exploit IT/OT convergence. The attackers are also exploiting weak spots in legacy approaches to security. For instance, many organizations use separate IT and OT security teams as well as distinct IT and OT security tools. This arrangement ultimately creates blind spots in cyber defenses.

The use of AI malware is likely to be part of the evolution of OT attacks. Only security teams equipped with AI themselves can expect to defend against these types of attacks. Darktrace enables IT and OT security teams to better collaborate and protect against these advanced persistent threats to critical infrastructure. Indeed, Darktrace has already caught APTs in the wild, without relying on any prior threat intelligence, but instead by learning ‘normal’ for every user, device and controller and identifying anomalous behavior that arose as a result of the attack.

As APTs such as Triton eventually get an update, and incorporate more innovative technologies into their TTPs, Darktrace builds resilience by learning the DNA of industrial infrastructure, illuminating any possible points of convergence between OT and the corporate network. By automating investigations and spotting all anomalous activity in real time, Darktrace augments human teams so that they stay one step ahead of tomorrow’s attacks.

Thanks to Darktrace analyst Oakley Cox for his insights on the above investigation.

Read more about the Industrial Immune System

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
데이비드 매슨
엔터프라이즈 보안 담당 이사

David Masson is Darktrace’s Director of Enterprise Security, and has over two decades of experience working in fast moving security and intelligence environments in the UK, Canada and worldwide. With skills developed in the civilian, military and diplomatic worlds, he has been influential in the efficient and effective resolution of various unique national security issues. David is an operational solutions expert and has a solid reputation across the UK and Canada for delivery tailored to customer needs. At Darktrace, David advises strategic customers across North America and is also a regular contributor to major international and national media outlets in Canada where he is based. He holds a master’s degree from Edinburgh University.

Book a 1-1 meeting with one of our experts
share this article
USE CASES
항목을 찾을 수 없습니다.
PRODUCT SPOTLIGHT
항목을 찾을 수 없습니다.
COre coverage
항목을 찾을 수 없습니다.

More in this series

항목을 찾을 수 없습니다.

Blog

항목을 찾을 수 없습니다.

Customer Blog: Community Housing Limited Enhancing Incident Response

Default blog imageDefault blog image
04
Mar 2024

About Community Housing Limited

Community Housing Limited is a non-profit organization based in Australia that focuses on providing affordable, long-term housing and creating employment opportunities where possible. We give people the security of having a home so that they can focus on other essential pathways. As such, we are responsible for sensitive information on our clients.

As part of our commitment to strengthening our cyber security, we sought to simplify and unify our incident response plans and equip our engineers and desktop support teams with all the information we need at our fingertips.

Why Community Housing Limited chose Darktrace

Our team hoped to achieve a response procedure that allowed us to have oversight over any potential security risks, even cases that don’t overtly seem like a security risk. For example, an incident could start as a payroll issue and end up in the hands of HR, instead of surfacing as a security problem. In this case, our security team has no way of knowing the real number of events or how the threat had actually started and played out, making incident response and mitigation even more challenging.

We were already a customer of Darktrace’s autonomous threat detection, attack intervention, and attack surface management capabilities, and decided to add Darktrace for AI-assisted incident response and AI cyber-attack simulation.

AI-generated playbooks save time during incident response

I wanted to reduce the time and resources it took our security team to appropriately respond to a threat. Darktrace automates several steps of the recovery process to accelerate the rate of incident response by using AI that learns the granular details of the specific organization, building a dynamic understanding of the devices, connections, and user behaviors that make up the normal “pattern of life.”  

The AI then uses this understanding to create bespoke, AI-generated incident response playbooks that leverage an evolving understanding of our organization to determine recovery steps that are tailored not only to the specific incident but also to our unique environment.

For my security team, this means having access to all the information we need to respond to a threat. When running through an incident, rather than going to different places to synthesize relevant information, which takes up valuable resources and time, we can speed up its remediation with Darktrace.  

The playbooks created by Darktrace help lower the technical skills required to respond to incidents by elevating the workload of the staff, tripling our capacity for incident response.

Realistic attack simulations upskill teams while saving resources

We have differing levels of experience on the team which means some members know exactly what to do during incident response while others are slower and need more guidance. Thus, we have to either outsource skilled security professionals or add a security solution that could lower the technical skills bar.

You don’t want to be second guessing and searching for the right move – it’s urgent – there should be certainty. Our goal with running attack simulations is to test and train our team's response capabilities in a “realistic” scenario. But this takes considerable time to plan and execute or can be expensive if outsourced, which can be a challenge for organizations short on resources. 

Darktrace provides AI-assisted incident response and cyber-attack simulation using AI that understands the organization to run simulations that effectively map onto the real digital environment and the assets within it, providing training for actual incidents.

It is one thing to sit together in a meeting and discuss various outcomes of a cyber-attack, talking through the best response strategies. It is a huge benefit being able to run attack simulations that emulate real-world scenarios.

Our team can now see how an incident would play out over several days to resemble a real-world scenario or it can play through the simulation quickly to ascertain outcomes immediately. It then uses these insights to strengthen its technology, processes, and training.

AI-Powered Incident Response

Darktrace helps my security team save resources and upskill staff using AI to generate bespoke playbooks and run realistic simulations. Its real-time understanding of our business ensures incident preparedness and incident response are tailored to not only the specific threat in question, but also to the contextual infrastructure of the organization.  

Continue reading
About the author
Jamie Woodland
Head of Technology at Community Housing Limited

Blog

이메일

Beyond DMARC: Navigating the Gaps in Email Security

Default blog imageDefault blog image
29
Feb 2024

Email threat landscape  

Email has consistently ranked among the most targeted attack vectors, given its ubiquity and criticality to business operations. From September to December 2023, 10.4 million phishing emails were detected across Darktrace’s customer fleet demonstrating the frequency of attempted email-based attacks.

Businesses are searching for ways to harden their email security posture alongside email providers who are aiming to reduce malicious emails traversing their infrastructure, affecting their clients. Domain-based Message Authentication (DMARC) is a useful industry-wide protocol organizations can leverage to move towards these goals.  

What is DMARC?

DMARC is an email authentication protocol designed to enhance the security of email communication.

Major email service providers Google and Yahoo recently made the protocol mandatory for bulk senders in an effort to make inboxes safer worldwide. The new requirements demonstrate an increasing need for a standardized solution as misconfigured or nonexistent authentication systems continue to allow threat actors to evade detection and leverage the legitimate reputation of third parties.  

DMARC is a powerful tool that allows email administrators to confidently identify and stop certain spoofed emails; however, more organizations must implement the standard for it to reach its full potential. The success and effectiveness of DMARC is dependent on broad adoption of the standard – by organizations of all sizes.  

How does DMARC work?

DMARC builds on two key authentication technologies, Sender Policy Framework (SPF) and DomainKeys Identified Mail (DKIM) and helps to significantly improve their ability to prevent domain spoofing. SPF verifies that a sender’s IP address is authorized to send emails on behalf of a particular domain and DKIM ensures integrity of email content by providing a verifiable digital signature.  

DMARC adds to this by allowing domain owners to publish policies that set expectations for how SPF and DKIM verification checks relate to email addresses presented to users and whose authenticity the receiving mail server is looking to establish.  

These policies work in tandem to help authenticate email senders by verifying the emails are from the domain they say they are, working to prevent domain spoofing attacks. Key benefits of DMARC include:

  1. Phishing protection DMARC protects against direct domain spoofing in which a threat actor impersonates a legitimate domain, a common phishing technique threat actors use to trick employees to obtain sensitive information such as privileged credentials, bank information, etc.  
  2. Improving brand reputation: As DMARC helps to prevent impersonation of domains, it stands to maintain and increase an organization’s brand reputation. Additionally, as organizational reputation improves, so will the deliverability of emails.
  3. Increased visibility: DMARC provides enhanced visibility into email communication channels, including reports of all emails sent on behalf of your domain. This allows security teams to identify shadow-IT and any unauthorized parties using their domain.

Understanding DMARC’s Limitations

DMARC is often positioned as a way for organizations to ‘solve’ their email security problems, however, 65% of the phishing emails observed by Darktrace successfully passed DMARC verification, indicating that a significant number of threat actors are capable of manipulating email security and authentication systems in their exploits. While DMARC is a valuable tool in the fight against email-based attacks, the evolving threat landscape demands a closer look at its limitations.  

As threat actors continue to innovate, improving their stealth and evasion tactics, the number of attacks with valid DMARC authentication will only continue to increase in volume and sophistication. These can include:

  1. Phishing attacks that leverage non-spoofed domains: DMARC allows an organization to protect the domains that they own, preventing threat actors from being able to send phishing emails from their domains. However, threat actors will often create and use ‘look-a-like’ domains that closely resemble an organization’s domain to dupe users. 3% of the phishing emails identified by Darktrace utilized newly created domains, demonstrating shifting tactics.  
  2. Email Account Takeovers: If a threat actor gains access to a user’s email account through other social engineering means such as credential stuffing, they can then send phishing emails from the legitimate domain to pursue further attacks. Even though these emails are malicious, DMARC would not identify them as such because they are coming from an authorized domain or sender.  

Organizations must also ensure their inbound analysis of emails is not skewed by successful DMARC authentication. Security teams cannot inherently trust emails that pass DMARC, because the source cannot always be legitimized, like in the event of an account takeover. If a threat actor gains access to an authenticated email account, emails sent by the threat actor from that account will pass DMARC – however the contents of that email may be malicious. Sender behavior must be continuously evaluated and vetted in real time as past communication history and validated DMARC cannot be solely relied upon amid an ever-changing threat landscape.  

Security teams should lean on other security measures, such as anomaly detection tools that can identify suspicious emails without relying on historical attack rules and static data. While DMARC is not a silver bullet for email security, it is nevertheless foundational in helping organizations protect their brand identity and must be viewed as an essential layer in an organization's overall cyber security strategy.  

Implementing DMARC

Despite the criticality of DMARC for preserving brand reputation and trust, adoption of the standard has been inconsistent. DMARC can be complex to implement with many organizations lacking the time required to understand and successfully implement the standard. Because of this, DMARC set-up is often outsourced, giving security and infrastructure teams little to no visibility into or control of the process.  

Implementation of DMARC is only the start of this process, as DMARC reports must be consistently monitored to ensure organizations have visibility into who is sending mail from their domain, the volume of mail being sent and whether the mail is passing authentication protocols. This process can be time consuming for security teams who are already faced with mounting responsibilities, tight budgets, and personnel shortages. These complexities unfortunately delay organizations from using DMARC – especially as many today still view it as a ‘nice to have’ rather than an essential.  

With the potential complexities of the DMARC implementation process, there are many ways security and infrastructure teams can still successfully roll out the standard. Initial implementation should start with monitoring, policy adjustment and then enforcement. As business changes over time, DMARC should be reviewed regularly to ensure ongoing protection and maintain domain reputation.

The Future of Email Security

As email-based attacks continue to rise, the industry must recognize the importance of driving adoption of foundational email authentication protocols. To do this, a new and innovative approach to DMARC is needed. DMARC products must evolve to better support organizations throughout the ongoing DMARC monitoring process, rather than just initial implementation. These products must also be able to share intelligence across an organization’s security stack, extending beyond email security tools. Integration across these products and tools will help organizations optimize their posture, ensuring deep understanding of their domain and increased visibility across the entire enterprise.

DMARC is critical in protecting brand identity and mitigating exact-domain based attacks. However, organizations must understand DMARC’s unique benefits and limitations to ensure their inboxes are fully protected. In today’s evolving threat landscape, organizations require a robust, multi-layered approach to stop email threats – in inbound mail and beyond. Email threats have evolved – its time security does too.

Join Darktrace on 9 April for a virtual event to explore the latest innovations needed to get ahead of the rapidly evolving threat landscape. Register today to hear more about our latest innovations coming to Darktrace’s offerings. For additional insights check out Darktrace’s 2023 End of Year Threat Report.

Credit to Carlos Gray and Stephen Pickman for their contribution to this blog

Continue reading
About the author
Carlos Gray
Product Manager

귀하의 비즈니스에 좋은 소식입니다.
나쁜 사람들에게 나쁜 소식입니다.

무료 평가판 시작

무료 평가판 시작

유연한 배송
Cloud-based deployment.
빠른 설치
설치하는 데 1 시간 밖에 걸리지 않으며 이메일 보안 평가판의 경우 더 적게 걸립니다.
여정 선택
클라우드, 네트워크 또는 이메일을 포함하여 가장 필요한 곳 어디에서나 셀프 러닝 AI를 사용해 보십시오.
약정 없음
Darktrace Threat Visualizer 및 세 개의 맞춤형 위협 보고서에 대한 모든 액세스 권한이 있으며 구매 의무는 없습니다.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
양식을 제출하는 동안 문제가 발생했습니다.

Get a demo

유연한 배송
가상환경에 설치하거나 하드웨어에 설치할 수 있습니다.
빠른 설치
설치하는 데 1 시간 밖에 걸리지 않으며 이메일 보안 평가판의 경우 더 적게 걸립니다.
여정 선택
클라우드, 네트워크 또는 이메일을 포함하여 가장 필요한 곳 어디에서나 셀프 러닝 AI를 사용해 보십시오.
약정 없음
Darktrace Threat Visualizer 및 세 개의 맞춤형 위협 보고서에 대한 모든 액세스 권한이 있으며 구매 의무는 없습니다.
감사합니다! 제출되었습니다!
양식을 제출하는 동안 문제가 발생했습니다.