Blog

Inside the SOC

Not Your Average Rodent: Darktrace’s Mitigation of the Sectop Remote Access Trojan (RAT)

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Nov 2023
20
Nov 2023
This blog discusses how Darktrace was able to successfully detect and respond to several incidents of SectopRAT compromise across its customer base.

Introduction

As malicious actors across the threat landscape continue to look for new ways to gain unauthorized access to target networks, it is unsurprising to see Remote Access Trojans (RATs) leveraged more and more. These RATs are downloaded discretely without the target’s knowledge, typically through seemingly legitimate software downloads, and are designed to gain highly privileged network credentials, ultimately allowing attackers to have remote control over compromised devices. [1]

SectopRAT is one pertinent example of a RAT known to adopt a number of stealth functions in order to gather and exfiltrate sensitive data from its targets including passwords, cookies, autofill and history data stores in browsers, as well as cryptocurrency wallet details and system hardware information. [2]

In early 2023, Darktrace identified a resurgence of the SectopRAT across customer environments, primarily targeting educational industries located in the United States (US), Europe, the Middle East and Africa (EMEA) and Asia-Pacific (APAC) regions. Darktrace DETECT™ was able to successfully identify suspicious activity related to SectopRAT at the network level, as well as any indicators of post-compromise on customer environments that did not have Darktrace RESPOND™ in place to take autonomous preventative action.

What is SectopRAT?

First discovered in early 2019, the SectopRAT is a .NET RAT that contains information stealing capabilities. It is also known under the alias ‘ArechClient2’, and is commonly distributed through drive-by downloads of illegitimate software and utilizes malvertising, including via Google Ads, to increase the chances of it being downloaded.

The malware’s code was updated at the beginning of 2021, which led to refined and newly implemented features, including command and control (C2) communication encryption with Advanced Encryption Stanard 256 (AES256) and additional commands. SectopRAT also has a function called "BrowserLogging", ultimately sending any actions it conducts on web browsers to its C2 infrastructure. When the RAT is executed, it then connects to a Pastebin associated hostname to retrieve C2 information; the requested file reaches out to get the public IP address of the infected device. To receive commands, it connects to its C2 server primarily on port 15647, although other ports have been highlighted by open source intelligence (OSINT), which include 15678, 15649, 228 and 80. Ultimately, sensitive data data gathered from target networks is then exfiltrated to the attacker’s C2 infrastructure, typically in a JSON file [3].

Darktrace Coverage

During autonomous investigations into affected customer networks, Darktrace DETECT was able to identify SSL connections to the endpoint pastebin[.]com over port 443, followed by failed connections to one of the IPs and ports (i.e., 15647, 15648, 15649) associated with SectopRAT. This resulted in the devices breaching the ‘Compliance/Pastebin and Anomalous Connection/Multiple Failed Connections to Rare Endpoint’ models, respectively.

In some instances, Darktrace observed a higher number of attempted connections that resulted in the additional breach of the model ‘Compromise / Large Number of Suspicious Failed Connections’.

Over a period of three months, Darktrace investigated multiple instances of SectopRAT infections across multiple clients, highlighting indicators of compromise (IoCs) through related endpoints.Looking specififically at one customer’s activity which centred on January 25, 2023, one device was observed initially making suspicious connections to a Pastebin endpoint, 104.20.67[.]143, likely in an attempt to receive C2 information.

Darktrace DETECT recognized this activity as suspicious, causing the 'Compliance / Pastebin' DETECT models to breach. In response to this detection, Darktrace RESPOND took swift action against the Pastebin connections by blocking them and preventing the device from carrying out further connections with Pastebin endpoints. Darktrace RESPOND actions related to blocking Pastebin connections were commonly observed on this device throughout the course of the attack and likely represented threat actors attempting to exfiltrate sensitive data outside the network.

Darktrace UI image
Figure 1: Model breach event log highlighting the Darktrace DETECT model breach ‘Compliance / Pastebin’.

Around the same time, Darktrace observed the device making a large number of failed connections to an unusual exernal location in the Netherlands, 5.75.147[.]135, via port 15647. Darktrace recognized that this endpoint had never previously been observed on the customer’s network and that the frequency of the failed connections could be indicative of beaconing activity. Subsequent investigation into the endpoint using OSINT indicated it had links to malware, though Darktrace’s successful detection did not need to rely on this intelligence.

Darktrace model breach event log
Figure 2: Model breach event log highlighting the multiple failed connectiosn to the suspicious IP address, 5.75.147[.]135 on January 25, 2023, causing the Darktrace DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach.

After these initial set of breaches on January 25, the same device was observed engaging in further external connectivity roughly a month later on February 27, including additional failed connections to the IP 167.235.134[.]14 over port 15647. Once more, multiple OSINT sources revealed that this endpoint was indeed a malicious C2 endpoint.

Darktrace model breach event log 2
Figure 3: Model breach event log highlighting the multiple failed connectiosn to the suspicious IP address, 167.235.134[.]14 on February 27, 2023, causing the Darktrace DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach.

While the initial Darktrace coverage up to this point has highlighted the attempted C2 communication and how DETECT was able to alert on the suspicious activity, Pastebin activity was commonly observed throughout the course of this attack. As a result, when enabled in autonomous response mode, Darktrace RESPOND was able to take swift mitigative action by blocking all connections to Pastebin associated hostnames and IP addresses. These interventions by RESPOND ultimately prevented malicious actors from stealing sensitive data from Darktrace customers.

Darktrace RESPOND action list
Figure 4: A total of nine Darktrace RESPOND actions were applied against suspicious Pastebin activity during the course of the attack.

In another similar case investigated by the Darktrace, multiple devices were observed engaging in external connectivity to another malicious endpoint,  88.218.170[.]169 (AS207651 Hosting technology LTD) on port 15647.  On April 17, 2023, at 22:35:24 UTC, the breach device started making connections; of the 34 attempts, one connection was successful – this connection lasted 8 minutes and 49 seconds. Darktrace DETECT’s Self-Learning AI understood that these connections represented a deviation from the device’s usual pattern of behavior and alerted on the activity with the ‘Multiple Connections to new External TCP Port’ model.

Darktrace model breach event log
Figure 5: Model breach event log highlighting the affected device successfully connecting to the suspicious endpoint, 88.218.170[.]169.
Darktrace advanced search query
Figure 6: Advanced Search query highlighting the one successful connection to the endpoint 88.218.170[.]169 out of the 34 attempted connections.

A few days later, on April 20, 2023, at 12:33:59 (UTC) the source device connected to a Pastebin endpoint, 172.67.34[.]170 on port 443 using the SSL protocol, that had never previously be seen on the network. According to Advanced Search data, the first SSL connection lasted over two hours. In total, the device made 9 connections to pastebin[.]com and downloaded 85 KB of data from it.

Darktrace UI highlighting connections
Figure 7: Screenshot of the Darktrace UI highlighting the affected device making multiple connections to Pastebin and downloading 85 KB of data.

Within the same minute, Darktrace detected the device beginning to make a large number of failed connections to another suspicious endpoints, 34.107.84[.]7 (AS396982 GOOGLE-CLOUD-PLATFORM) via port 15647. In total the affected device was observed initiating 1,021 connections to this malicious endpoint, all occurring over the same port and resulting the failed attempts.

Darktrace advanced search query 2
Figure 8: Advanced Search query highlighting the affected device making over one thousand connections to the suspicious endpoint 34.107.84[.]7, all of which failed.

Conclusion

Ultimately, thanks to its Self-Learning AI and anomaly-based approach to threat detection, Darktrace was able to preemptively identify any suspicious activity relating to SectopRAT at the network level, as well as post-compromise activity, and bring it to the immediate attention of customer security teams.

In addition to the successful and timely detection of SectopRAT activity, when enabled in autonomous response mode Darktrace RESPOND was able to shut down suspicious connections to endpoints used by threat actors as malicious infrastructure, thus preventing successful C2 communication and potential data exfiltration.

In the face of a Remote Access Trojan, like SectopRAT, designed to steal sensitive corporate and personal information, the Darktrace suite of products is uniquely placed to offer organizations full visibility over any emerging activity on their networks and respond to it without latency, safeguarding their digital estate whilst causing minimal disruption to business operations.

Credit to Justin Torres, Cyber Analyst, Brianna Leddy, Director of Analysis

Appendices

Darktrace Model Detection:

  • Compliance / Pastebin
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Large Number of Suspicious Failed Connections
  • Anomalous Connection / Multiple Connections to New External TCP Port

List of IoCs

IoC - Type - Description + Confidence

5.75.147[.]135 - IP - SectopRAT C2 Endpoint

5.75.149[.]1 - IP - SectopRAT C2 Endpoint

34.27.150[.]38 - IP - SectopRAT C2 Endpoint

34.89.247[.]212 - IP - SectopRAT C2 Endpoint

34.107.84[.]7 - IP - SectopRAT C2 Endpoint

34.141.16[.]89 - IP - SectopRAT C2 Endpoint

34.159.180[.]55 - IP - SectopRAT C2 Endpoint

35.198.132[.]51 - IP - SectopRAT C2 Endpoint

35.226.102[.]12 - IP - SectopRAT C2 Endpoint

35.234.79[.]173 - IP - SectopRAT C2 Endpoint

35.234.159[.]213 - IP - SectopRAT C2 Endpoint

35.242.150[.]95 - IP - SectopRAT C2 Endpoint

88.218.170[.]169 - IP - SectopRAT C2 Endpoint

162.55.188[.]246 - IP - SectopRAT C2 Endpoint

167.235.134[.]14 - IP - SectopRAT C2 Endpoint

MITRE ATT&CK Mapping

Model: Compliance / Pastebin

ID: T1537

Tactic: EXFILTRATION

Technique Name: Transfer Data to Cloud Account

Model: Anomalous Connection / Multiple Failed Connections to Rare Endpoint

ID: T1090.002

Sub technique of: T1090

Tactic: COMMAND AND CONTROL

Technique Name: External Proxy

ID: T1095

Tactic: COMMAND AND CONTROL

Technique Name: Non-Application Layer Protocol

ID: T1571

Tactic: COMMAND AND CONTROL

Technique Name: Non-Standard Port

Model: Compromise / Large Number of Suspicious Failed Connections

ID: T1571

Tactic: COMMAND AND CONTROL

Technique Name: Non-Standard Port

ID: T1583.006

Sub technique of: T1583

Tactic: RESOURCE DEVELOPMENT

Technique Name: Web Services

Model: Anomalous Connection / Multiple Connections to New External TCP Port

ID: T1095        

Tactic: COMMAND AND CONTROL    

Technique Name: Non-Application Layer Protocol

ID: T1571

Tactic: COMMAND AND CONTROL    

Technique Name: Non-Standard Port

References

1.     https://www.techtarget.com/searchsecurity/definition/RAT-remote-access-Trojan

2.     https://malpedia.caad.fkie.fraunhofer.de/details/win.sectop_rat

3.     https://threatfox.abuse.ch/browse/malware/win.sectop_rat

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Justin Torres
Cyber Analyst
Book a 1-1 meeting with one of our experts
share this article
USE CASES
항목을 찾을 수 없습니다.
PRODUCT SPOTLIGHT
항목을 찾을 수 없습니다.
COre coverage
항목을 찾을 수 없습니다.

More in this series

항목을 찾을 수 없습니다.

Blog

Inside the SOC

Lost in Translation: Darktrace Blocks Non-English Phishing Campaign Concealing Hidden Payloads

Default blog imageDefault blog image
15
May 2024

Email – the vector of choice for threat actors

In times of unprecedented globalization and internationalization, the enormous number of emails sent and received by organizations every day has opened the door for threat actors looking to gain unauthorized access to target networks.

Now, increasingly global organizations not only need to safeguard their email environments against phishing campaigns targeting their employees in their own language, but they also need to be able to detect malicious emails sent in foreign languages too [1].

Why are non-English language phishing emails more popular?

Many traditional email security vendors rely on pre-trained English language models which, while function adequately against malicious emails composed in English, would struggle in the face of emails composed in other languages. It should, therefore, come as no surprise that this limitation is becoming increasingly taken advantage of by attackers.  

Darktrace/Email™, on the other hand, focuses on behavioral analysis and its Self-Learning AI understands what is considered ‘normal’ for every user within an organization’s email environment, bypassing any limitations that would come from relying on language-trained models [1].

In March 2024, Darktrace observed anomalous emails on a customer’s network that were sent from email addresses belonging to an international fast-food chain. Despite this seeming legitimacy, Darktrace promptly identified them as phishing emails that contained malicious payloads, preventing a potentially disruptive network compromise.

Attack Overview and Darktrace Coverage

On March 3, 2024, Darktrace observed one of the customer’s employees receiving an email which would turn out to be the first of more than 50 malicious emails sent by attackers over the course of three days.

The Sender

Darktrace/Email immediately understood that the sender never had any previous correspondence with the organization or its employees, and therefore treated the emails with caution from the onset. Not only was Darktrace able to detect this new sender, but it also identified that the emails had been sent from a domain located in China and contained an attachment with a Chinese file name.

The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.
Figure 1: The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.

Darktrace further detected that the phishing emails had been sent in a synchronized fashion between March 3 and March 5. Eight unique senders were observed sending a total of 55 emails to 55 separate recipients within the customer’s email environment. The format of the addresses used to send these suspicious emails was “12345@fastflavor-shack[.]cn”*. The domain “fastflavor-shack[.]cn” is the legitimate domain of the Chinese division of an international fast-food company, and the numerical username contained five numbers, with the final three digits changing which likely represented different stores.

*(To maintain anonymity, the pseudonym “Fast Flavor Shack” and its fictitious domain, “fastflavor-shack[.]cn”, have been used in this blog to represent the actual fast-food company and the domains identified by Darktrace throughout this incident.)

The use of legitimate domains for malicious activities become commonplace in recent years, with attackers attempting to leverage the trust endpoint users have for reputable organizations or services, in order to achieve their nefarious goals. One similar example was observed when Darktrace detected an attacker attempting to carry out a phishing attack using the cloud storage service Dropbox.

As these emails were sent from a legitimate domain associated with a trusted organization and seemed to be coming from the correct connection source, they were verified by Sender Policy Framework (SPF) and were able to evade the customer’s native email security measures. Darktrace/Email; however, recognized that these emails were actually sent from a user located in Singapore, not China.

Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.
Figure 2: Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.

The Emails

Darktrace/Email autonomously analyzed the suspicious emails and identified that they were likely phishing emails containing a malicious multistage payload.

Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.
Figure 3: Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.

There has been a significant increase in multistage payload attacks in recent years, whereby a malicious email attempts to elicit recipients to follow a series of steps, such as clicking a link or scanning a QR code, before delivering a malicious payload or attempting to harvest credentials [2].

In this case, the malicious actor had embedded a suspicious link into a QR code inside a Microsoft Word document which was then attached to the email in order to direct targets to a malicious domain. While this attempt to utilize a malicious QR code may have bypassed traditional email security tools that do not scan for QR codes, Darktrace was able to identify the presence of the QR code and scan its destination, revealing it to be a suspicious domain that had never previously been seen on the network, “sssafjeuihiolsw[.]bond”.

Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.
Figure 4: Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.

At the time of the attack, there was no open-source intelligence (OSINT) on the domain in question as it had only been registered earlier the same day. This is significant as newly registered domains are typically much more likely to bypass gateways until traditional security tools have enough intelligence to determine that these domains are malicious, by which point a malicious actor may likely have already gained access to internal systems [4]. Despite this, Darktrace’s Self-Learning AI enabled it to recognize the activity surrounding these unusual emails as suspicious and indicative of a malicious phishing campaign, without needing to rely on existing threat intelligence.

The most commonly used sender name line for the observed phishing emails was “财务部”, meaning “finance department”, and Darktrace observed subject lines including “The document has been delivered”, “Income Tax Return Notice” and “The file has been released”, all written in Chinese.  The emails also contained an attachment named “通知文件.docx” (“Notification document”), further indicating that they had been crafted to pass for emails related to financial transaction documents.

 Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.
Figure 5: Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.

Conclusion

Although this phishing attack was ultimately thwarted by Darktrace/Email, it serves to demonstrate the potential risks of relying on solely language-trained models to detect suspicious email activity. Darktrace’s behavioral and contextual learning-based detection ensures that any deviations in expected email activity, be that a new sender, unusual locations or unexpected attachments or link, are promptly identified and actioned to disrupt the attacks at the earliest opportunity.

In this example, attackers attempted to use non-English language phishing emails containing a multistage payload hidden behind a QR code. As traditional email security measures typically rely on pre-trained language models or the signature-based detection of blacklisted senders or known malicious endpoints, this multistage approach would likely bypass native protection.  

Darktrace/Email, meanwhile, is able to autonomously scan attachments and detect QR codes within them, whilst also identifying the embedded links. This ensured that the customer’s email environment was protected against this phishing threat, preventing potential financial and reputation damage.

Credit to: Rajendra Rushanth, Cyber Analyst, Steven Haworth, Head of Threat Modelling, Email

Appendices  

List of Indicators of Compromise (IoCs)  

IoC – Type – Description

sssafjeuihiolsw[.]bond – Domain Name – Suspicious Link Domain

通知文件.docx – File - Payload  

References

[1] https://darktrace.com/blog/stopping-phishing-attacks-in-enter-language  

[2] https://darktrace.com/blog/attacks-are-getting-personal

[3] https://darktrace.com/blog/phishing-with-qr-codes-how-darktrace-detected-and-blocked-the-bait

[4] https://darktrace.com/blog/the-domain-game-how-email-attackers-are-buying-their-way-into-inboxes

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst

Blog

항목을 찾을 수 없습니다.

The State of AI in Cybersecurity: The Impact of AI on Cybersecurity Solutions

Default blog imageDefault blog image
13
May 2024

About the AI Cybersecurity Report

Darktrace surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog continues the conversation from “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on cybersecurity solutions.

To access the full report, click here.

The effects of AI on cybersecurity solutions

Overwhelming alert volumes, high false positive rates, and endlessly innovative threat actors keep security teams scrambling. Defenders have been forced to take a reactive approach, struggling to keep pace with an ever-evolving threat landscape. It is hard to find time to address long-term objectives or revamp operational processes when you are always engaged in hand-to-hand combat.                  

The impact of AI on the threat landscape will soon make yesterday’s approaches untenable. Cybersecurity vendors are racing to capitalize on buyer interest in AI by supplying solutions that promise to meet the need. But not all AI is created equal, and not all these solutions live up to the widespread hype.  

Do security professionals believe AI will impact their security operations?

Yes! 95% of cybersecurity professionals agree that AI-powered solutions will level up their organization’s defenses.                                                                

Not only is there strong agreement about the ability of AI-powered cybersecurity solutions to improve the speed and efficiency of prevention, detection, response, and recovery, but that agreement is nearly universal, with more than 95% alignment.

This AI-powered future is about much more than generative AI. While generative AI can help accelerate the data retrieval process within threat detection, create quick incident summaries, automate low-level tasks in security operations, and simulate phishing emails and other attack tactics, most of these use cases were ranked lower in their impact to security operations by survey participants.

There are many other types of AI, which can be applied to many other use cases:

Supervised machine learning: Applied more often than any other type of AI in cybersecurity. Trained on attack patterns and historical threat intelligence to recognize known attacks.

Natural language processing (NLP): Applies computational techniques to process and understand human language. It can be used in threat intelligence, incident investigation, and summarization.

Large language models (LLMs): Used in generative AI tools, this type of AI applies deep learning models trained on massively large data sets to understand, summarize, and generate new content. The integrity of the output depends upon the quality of the data on which the AI was trained.

Unsupervised machine learning: Continuously learns from raw, unstructured data to identify deviations that represent true anomalies. With the correct models, this AI can use anomaly-based detections to identify all kinds of cyber-attacks, including entirely unknown and novel ones.

What are the areas of cybersecurity AI will impact the most?

Improving threat detection is the #1 area within cybersecurity where AI is expected to have an impact.                                                                                  

The most frequent response to this question, improving threat detection capabilities in general, was top ranked by slightly more than half (57%) of respondents. This suggests security professionals hope that AI will rapidly analyze enormous numbers of validated threats within huge volumes of fast-flowing events and signals. And that it will ultimately prove a boon to front-line security analysts. They are not wrong.

Identifying exploitable vulnerabilities (mentioned by 50% of respondents) is also important. Strengthening vulnerability management by applying AI to continuously monitor the exposed attack surface for risks and high-impact vulnerabilities can give defenders an edge. If it prevents threats from ever reaching the network, AI will have a major downstream impact on incident prevalence and breach risk.

Where will defensive AI have the greatest impact on cybersecurity?

Cloud security (61%), data security (50%), and network security (46%) are the domains where defensive AI is expected to have the greatest impact.        

Respondents selected broader domains over specific technologies. In particular, they chose the areas experiencing a renaissance. Cloud is the future for most organizations,
and the effects of cloud adoption on data and networks are intertwined. All three domains are increasingly central to business operations, impacting everything everywhere.

Responses were remarkably consistent across demographics, geographies, and organization sizes, suggesting that nearly all survey participants are thinking about this similarly—that AI will likely have far-reaching applications across the broadest fields, as well as fewer, more specific applications within narrower categories.

Going forward, it will be paramount for organizations to augment their cloud and SaaS security with AI-powered anomaly detection, as threat actors sharpen their focus on these targets.

How will security teams stop AI-powered threats?            

Most security stakeholders (71%) are confident that AI-powered security solutions are better able to block AI-powered threats than traditional tools.

There is strong agreement that AI-powered solutions will be better at stopping AI-powered threats (71% of respondents are confident in this), and there’s also agreement (66%) that AI-powered solutions will be able to do so automatically. This implies significant faith in the ability of AI to detect threats both precisely and accurately, and also orchestrate the correct response actions.

There is also a high degree of confidence in the ability of security teams to implement and operate AI-powered solutions, with only 30% of respondents expressing doubt. This bodes well for the acceptance of AI-powered solutions, with stakeholders saying they’re prepared for the shift.

On the one hand, it is positive that cybersecurity stakeholders are beginning to understand the terms of this contest—that is, that only AI can be used to fight AI. On the other hand, there are persistent misunderstandings about what AI is, what it can do, and why choosing the right type of AI is so important. Only when those popular misconceptions have become far less widespread can our industry advance its effectiveness.  

To access the full report, click here.

Continue reading
About the author
The Darktrace Community
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

무료 평가판 시작
Darktrace AI protecting a business from cyber threats.